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fictitious field. 
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A basic introduction t o  the theory of plasma difRrsion is 

glven with references t o  previous papers in this area. 

is  placed on characterizing the diff’usion by dyadic diffusion 

coefficients so that diff’usian i n  the presence of magnetic fields 

Enphasis 

can be included. 

diffusion mechanisms are assumed t o  exist in the plasma. 

In  the theory, only attachment, ionization and 

Solutions 

are given for plasma distributions i n  rectangular and cyundrical  

geometries. An experbent is described which allows theblasma c 

properties t o  be measured by reflection of a dcminant “Elo 

(rectangular waveguide mode from a decaying plasma distribution 

which par t ia l ly  fills the waveguide. Preliminary results in the 

absence of a magnetic f ie ld  indicate the presence of a number of 

resonances i n  the plasma slab. 
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COLCISIONAL DIFFUSION 

1.1 Introduction 

?he study of diff’usion of  electrons and ions i n  an ionized 

gas is certainly not a relatively new topic. Early studies, based 

on normal binary electron-atm collision theory, w e r e  conducted by 

J. S. Townsend as early as 1912.’ Townsend developed the w e l l  

known collisional diff’usion coefficients for  a weakly ionized gas 

i n  the presence of a uniform axial magnetic field. 

ionized atam, 

For s ing l y  

where 

y = eB/mi ; o = eB/me ; e 

D. is the diffusion coefficient of ions or electrons i n  the 

absence of the w e t i c  f i e l d ,  e is the electronic charge, 

m. is the ion o r  electronmass and iiYe is the binary 

collision interval between ion or electron collisions with 

neutrals. 

1 
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Further study of p lasm diffusion was made by Schottlg, who 

considered the case of equal electron and ion currents, ambipolar 

diffusion, for  the positive column. 2 

Since this early work, many authors have treated the subject 

Within the of plasma diffusion with and without magnetic fields. 

last 25 years and especially within the last 10 years, a great 

effort  has been made i n  this direction t o  understand the processes 

involved. 

desire t o  confine plasmas with m e t i c  fields. 

Impetus has been given t o  this study, perhaps, by the 

A nLnber of good reviews of theory and experiment exist, such 
a s  those by G o I ~ n t , ; ~  Hob; 4 and 0sk3me5 Eepnr121~p . . p f p ~ ~ c c s  z~ 

given i n  these papers. 

1.2 Collisional Diffusion - Boltzmann Appmach 

Phase Space - If the position of a particle is known t o  occupy a 

certain region of real space, that is, t o  l i e  within a range of 

coordinates x + dx, y + dy, z + dz and also has associated with 

it a velocity known t o  be i n  the range vx+ dvx, v + dv vz+ dvz , Y Y’ 

the par t ic le  can be described in a 6 - ~ t i m n s i o ~  phase space by 

specioing its coordinate position. 

this phase space, the complete specification of the system i s  t o  

specify the number of particles occupying each elemental v o l m  

If a group of particles occupy 
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6 d T = dxdydzdv dv dvz of phase space at each instant of time. 
X Y  

This specification of particles must necessarily be discrete, by 

definition, but i f  the nunber of particles i n  phase space is  large 

and the elemntal  volume d T small, a good approximation is 

obt&iied by speclQhg tfie nmber of pa%lcies iri im space by a 

continuous distribution function, f (c,v,t), rather than its 

discrete form. 

6 

BoltPnan Equation - If the phase space point of view is taken 

for a plasma and a l l  possible ways of changing the electron (or 

ion) distribution flmction f(c,3t) are considered, the following 

equation, tne Eroitzmann equation, results: 

af/ax. dx./dt + c af/av.dv./dt 
J J  j=1,2,3 

a f /  a t  + c 
j=1,2,3 

- - (af’’t)due t o  collisions 

where j=1,2,3 correspond t o  the coordinates x,y,z . A detailed 

discussion of the Boltzmann equation is given by Chapman and 
6 C o w l i n g .  

The procedure t o  be followed i n  obtaining the continuity 

equation and diffusion coefficient expressions paral le ls  that of 

Spitzer, Delcroix and Golmt3. When (1-2) i s  integrated over all 8 
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velocity space, the continuity equation is  obtained 

a d a t  + v.(nV) - = (an/at)coll. (1-3) 

where 

is the electron density distribution function n ( r , t )  and v is 

the mean electron velocity o f t h e  system of electrons. 

- 

There are a number of ways i n  which the number of electrons 

in a plasma m y  be changed by collisions: 

1) ionization collisions 

2) reconhination collisions 

3)  attachment collisions. 

Ionization Collisions - The dominant ionizing mechanism in a 

weak ly  ionized gas is  normally the electran-atom collision. 

Electrons i n  the gas are accelerated by external e lec t r ic  fields, 

either steady o r  alternating, o r  by som other mans until they 

have e n o w  energy t o  ionize atoms of the gas. A collision of an 

electron of sufficient energy t o  ionize an atom w i t h  an atom of 

the gas may then ionize the atom. The l a w  of mass action gives 

the tire ra te  of increase of electrons by this process of 
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collision. 

increase is  written 

The relationship between density and time rate of 

a d a t  a non = vin 

.L ,~ZFS ‘ir 

is the neutral atom density function. 

is t ie eiectron-atom ionization coll ision f’requency, n i 0 

Recombination Collisions - Recombination may be quite complicated 

fo r  SOIIY? ionized gases where two or  three reactions are necessary 

before an electron has the correct energy t o  recombine with an ion 

to form the atom. 

involves capture of an electron by a singly ionized atom. 

of reconbination f o r  th i s  process proceeds a s  

However, i n  many gases, the dominant process 

The rate 

a d a t  = -k n.n 
0 1  (1-5) 

where n is the ion distribution f’unction. Usually, it is  

assumd that the p lasm is  neutral 
i 

(n A ni) . For this case, 

2 a d a t  = -h 

is the equation f o r  electron recornbination loss; k is the 

proportionality constant which is called the recombination 

cwff ic ien t .  
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Attachment - In non-noble gases there exists an aff ini ty  of an atom 

fo r  another electron so that free electrons can be attached t o  atoms 

t o  produce negative ions. 

attac-nt and the electron density can be written 

The relationship between the rate of 

an/ 'a t  IT n n = -u n ii-7 j 
0 a 

where ua is the attachment coefficient, no the neutral density 

distribution f'unction. 

5 Oskam discusses volume and surface recombination and 

a t t a c m n t  of electrons in  a plasma v o l m .  

For the processes that are considered here, the continuity 

equation, (1-31, beccms 

V. (nv) - + (ua- vi)n + kn2 = - a n / a t  (1-8) 

2 where (vi- ua)n - k n  

Equation (1-8) can be expressed i n  a more convenient form i f  the 

velocity can be expressed as a function of the density n . 
mmntum equation fo r  the ionized gas is considered and a l l  

possible ways of changing the mmntum of the electron is 

accounted for,  an expression for nv i n  terms of n can be 

obtained. 

Boltmann equation, (21, by the velocity - v and again integrating 

has been substituted for  (an/at)coll. . 

If the 

- 
The momentum equation is obtained by multiplying the 
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over velocity space t o  obtain the average space mornenturn equation. 
Following Spitzer 8 and DelCmix7 , the mrrenturn equation can be 

written i n  the following form: 

where m is  the electronmass, e is  the electronic charge, 

i s  the magnetic f ie ld ,  $- i s  the stress tensor, pl is  the 

gravitational potential, P i s  the net average momentum gain due t o  

e l a s t i c  collisions with other particles.  

(1-8) has been used t o  reduce (1-9) t o  its present form. 

result is different fromthe results obtained by Spitzer and 

Delcroix since they considered no changes in the nmber of 

particles due t o  collisions. 

- 
The continuity equation 

The 

When the pressure is a s c a l a r  quant i ty ,  - v. F is written 

-Vp, where p is the pressure and fo r  a Maxwellian velocity 

distribution is equal t o  nKTe where Te i s  the electron 

temperature, K is BoltPnann's constant. The pressure here is the 

electron p a r t i a l  pressure pe= nlDe because the momntun equation 

is  written specifically f o r  electrons. 
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For a weakly ionized gas, the mornentun tern P can be - 
- 

approldrnated by -rmeve&, where ven i s  the electron-neutral 

coll ision f'requency. 

collisions are mch less probable than the electron-neutral 

collislons. 

,' v and its tw rate of change are small i n  comparison t o  the 

electron-neutral collision term and the random electron velocity 

respectively. 

(1-9) is neglected and (1-9) reduces t o  

It is assumed here that the electron-ion 

In addition, it is assumed that the directed velocity, 
- 

With these approximations i n  mind, the left side of 

e(E - - -  + 7 x B) + KTe Vn/n + [(va-vi) + kn + v e n ] 6  - = 0 (1-10) 

It is also assurned that Te is constant throughout the plasm 

volume. 

?"ne solution fo r  7 - can be obtained by taking the projection 

of equation (1-10) i n  the direction of ; fo r  example, vx is 

found by taking the scalar product of the vector equation (1-10) 

with the unit vector . The general result can be written i n  a 

compact form i f  tensor quantitites are introduced. 

- v is given as 

The resul t  fo r  
- 

(1-11) 



18 9 

I 
8 
I 
8 
8 
8 
I 
8 
1 
1 
I 

where 5 is defined to be the diff’usion tensor and ’i; is the 

tensor -mobility. 

The continuity equation, (1-3) can now be written i n  a different 

form with the aid of (1-11): 

(1-12) 

The diffusion coefficient as defined by eqs. (1-10) and (1-11) is 

necessarily space and t h e  dependent because of the recombination 

term kn i n  equation (1-10) . Normally, however, the electron- 

neutral collision frequency i s  dominant over the recombination, 

attacknnent and ionization t e r n  so that these coefficients may 

normally be neglected i n  comparison to the electron-neutral 

coll ision term. Most calculations of the diffusion coefficient and 

mobility tensors are mde under this assumption. 9 

For the case i n  which the total average e lec t r ic  f i e l d  i n  the 

plasm vanishes, the continuity equation reduces t o  a form involving 

only the density function n : 

(1-13) 

Another condition of plasma diffusion exists such that the electr ic  

f i e ld  can be expressed i n  terms of n and the continuity equation 
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again reduces t o  the form given i n  (1-13) . 

1.3  Ambipolar Diffusion 

A very special diffusion condition may exist in a plasm such 

that the average electron current, ne 5 , is jus t  equal t o  the ion 

This candition exists in a steady-state plasma volume where the 

w a l l s  are insulated so tha t  the w a l l  conditions prescribe the 

equality of currents throu&out the p lasm volume. 

equality of currents indicates that the charge separation of 

electrons and ions couples the electron and ion flows by means of 

the e lec t r ic  Meld which the separation produces. This ambipolar 

process can be described by regular diff'usion theory i f  the 

diff'usion coefficients are changed t o  the ambipolar diffusion 

coefficients. 

ambipolar diffusion, it is necessary t o  express the e lec t r ic  f ie ld  

in terms of the electron density n . 

Physically, the 

I n  order t o  obtain the diffusion expression for  

Equations (1-10) and (1-ll), as they are written, are jus t  as 

valid for  ions as electrons. Using equation (1-11) and equating 

the electron and ion currents in a p lasm gives: 

- - 
n v = n .  v. = - E ' . v ~ +  n E e -e  1 -1 e e e e ' -  
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- 
= - Di . Vn.+ n u  . E (1-14) 1 i i  - 

where the subscripts e, i refer t o  the electron and ion properties 

respectively. The equation may be solved for  the e lec t r ic  field, 

with the result: 

- - -1 - 
E = (niGi- n v ) *(Di . mi- De . - e e  me) 

where ( here indicates the inverse matrix operation. It is 

also assumed hen?, for  the case-of perfect ambipolar diffbsion, that 

ne - - ni = n so  that the expression f o r  the e lec t r ic  f ield reduces 

i n  its final fonn t o  

(1-16) 

If this expression for  the e lee t r ie  f ield is substituted in to  the 

continuity equation (1-12) , t h e  continuity equation reduces t o  

the expression 

1. 4 Measurerrents 

In order t o  masure the properties of a plasma such as  
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diffusion, reco&ination and ionization, it i s  necessary t o  know 

the density function as a f'unction of tine. 

the continuity equation (1-13), (1-17'1, has not been obtained 

except i n  the one dimensional problem because of the non-linearity 

in tne aensity function n . 
t o  a m a s m m n t  of n the effect of reconbination. If the 

recombination term is neglected, the exact solution of the 

continuity equation is possible i n  most coordinate system. 

any s%qlLfying asswptions are made, however, a consideration of 

the recombination process i s  necessary. 

The exact solution of 

It is Vnerefore difficult t o  assess 

Before 

A numerical calculation o f  the density function for processes 

i n  which diffusion and recombination exis t  simultaneously has been 

made by G r a y  and K e r r . l 0  The va l id i ty  of many microwave 

measuremnts of recombination is considered i n  their paper. 



CHAPTER I1 

SOLUTIONS OF THE DDRJSION PROBLEM 

In a plasma difflxsion problem, the equation describing the 

diffusion process which includes ionization and attachment but 

neglects reccanbination is  written as 

where is the diffusion tensor, n i s  the electron density 

distribution function, ui is the ionization collision f’requency 

and va is the attachment collision frequency. In  equation (2-1) 

the electron flow term r = n 7 is  written as -5. Vn . It i s  

assumed here that E, u and va are not f’unctions of position 

- -e 

i 

and no temperature gradients a re  considered. 

gradients cause 5 t o  be space dependent, the additional diffusion 

term can be added as na/ax D = nV . 3 w h e r e  ET indicates 

If temperature 

k jk 

the transpose of 5 . 11 
2.1 Diffusion in a RectanRu;l a r  Geometry 

For the rectangular case, (2-1) reduces t o  



* 

14 

r /  
Z Fig. 1 

If no magnetic f ield exists, there is no net coupling between 

a diffusive flow i n  one direction t o  any other direction, so the 

diffusion tensor is 
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where D is the free space diffusion coefficient. The continuity 

equation for  the plasma then reduces t o  

D(a2n/ax2+ a w a y +  aWaz2)  + (vi- va)n 

= an/at . ( 2-4 1 

If, on the other hand, a uniform steady-state magnetic f i e l d  is 

applied, the diffusion tensor now takes on the general form 

- 
D =  D D 

YX ' YY YZ 
D 

DZx DZy DZz 

Suppose for argumnt that the m e t i c  f i e ld  is  +z directed 

as in Fig. 1 (page 14)  . Then, a unit gradient of n i n  the - a 
X 

direction causes a flow D of electrons i n  the -a -37 direction 

due t o  the -e - -  v x B force on the electrons. A unit  gradient of n 

i n  the a direction causes an electron flow i n  the gx direction 

equal to  D Since the space is homogeneous, the two flows must 

be equal i n  magnitude and therefore D = -D . A more general 

YX 

Y 

. w 

YX Iry 

analysis of microscopic i r revers ibi l i ty  i s  treated by H. B. G. 

Casmir.I2 

also found by similar argument that 

For t h i s  geometry and magnetic f i e ld  orientation it is  



and 

so 

- 
D =  

16 

Dm Dxy Dxz 

-Dm -Dyz DZz 

-D D D 
Xy YY YZ 

If the analysis is extended by superposition of magnetic fields 

t o  obtain a general orientation of the w e t i c  f ie ld ,  

B = B  a + B  a + B  & , the general dyadic form of the diffusion - 1-x 2 7  3 

tensor becomes 

The general tensor can be obtained by adding the skew-syrranetric 

parts of the diffusion tensors obtained when the three components 

of magnetic f ield are assmd t o  act individually and adding the 

corresponding diagonal parts essentially as series conductances. 

In general, 

- - - + 5 = skew-symetric part of 5 Dss - Dlss+ j72ss 3ss 

I 
I 
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- 1 
Dkk- -+ -+ - - -  1 1 2 

D 
".(2 De3 

( 2-8) 

k = x, y, z 

where the subscripts 1, 2, 3 correspond to B,, B2, and B, . This 
1- 3 

formula for  obtaining the general tensor assumes that the diffusion 

satisifes nonnal diffusion theory, that is DL = where D 

is the free space diffusion constant, 

l + U 2 T 2  

is the electron el3 - - 

cyclotron frequency, and T is the man-time between collisions of 

the electron and neutral particle. Zf a particular ccanponent of 

the magnetic field is zero, say B3 , then Dxx = D = = D .  
2 YY2 DZZ2 
J J J 

-- 
The general a f f u s i o n  tensor then is of the form D=Dd+ Ess 

where Ed is a diagonal tensor and Ess is the skew-symnetric 

pa r t  of 5 . 
d i f m i o n  tensor is  shown when the expression 

expanded. 

The significance associated with this form of the 

V.  (5. Vn) is 

For the diff ls ion tensor i n  this form, it is  easily 

seen that V. (5. vn) i n  rect-ar coordinates reduces to 

( 2 . 9 )  

Therefore, electron losses due t o  diffusion depend only on the 

diagonal elements of the diffusion tensor or the diffusion 
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coefficients along the coordinate axes i n  a rectangular coordinate 

system and there are no mixed p a r t i a l  derivatives i n  the expansion 

of the continuity equation. 

The reduction of the diffusion equation t o  this form can a lso  

be shown easily by considering the del operator ( V )  as a linear 

operator fo r  matrix multiplication. 

the divergence operator i s  equal t o  the gradient operator so the 

matrix equation can be wri t ten i n  the following form by defining 

the del operator as V i X operator. 

For rectangular coordinates, 

Therefore, 

(XTEss X) T = (X T- DsS X >  = -xTEss x . 

The matrix (XTEss X )  is a square m t r i x  of order 1, so it must be 

equal t o  its transpose. Thus it is shown that 

xTEssx = -x%ss x = 0 . 



the main diagonal portion of 5 . It is therefore concluded that 

any diff’usion problem expressed i n  rectangular coordinates with a 

uniform steady-state magnetic f ie ld  of any orientation can be 

expressed i n  term of the principal diffusion coefficients only and 

that the cross t e r n  in the expansion of the continuity equation do 

not enter  i n to  the problem. 

diff’usion with a rectangular coordinate system is then 

?”ne equation t o  be solved in considering 

+ ( V  -V )n = a d a t  . i a  ( 2-10) 

2.2 Solutions of Diff’usion i n  a Rectangular Gemtry 

In order t o  obtain a unique solution fo r  the diff’usion problem, 

it w i l l  be assumed that a l l  electrons that reach the walls of the 

rectangular container are recombined or  los t  from the plasma volume, 

that is, nwall = 0 . It is  also assumed that n = n(x,y,z,t) is 

a product solution of the form 

OD 

s i n  n d a  sin m n y / b  h (z , t )  

(2-11) 
a* c 

n=O,IIFo 
- - 

Applying the Laplace transform 



F(s) = o/=f(t) e-st dt  (2-12 ) 

t o  (2-10) gives 

+ u N = s N -  N 
0 

where N is the Laplace t m f o r m  of n(x,y,z,t) , u =v -u and i a  

No is the initial density function n(x,y,z,O) . 

From (2-11) and (2-12) , 

where h(z,s)  is the Laplace transform of h(z , t )  . It is also 

assurned that 

00 

N o =  C bm s i n  nnx/a s i n  m v / b  p(z)  . ( 2-15 1 
n=o ,m=o 

Substituting (2-13) and (2-14) in (2-15) and equating terms gives 

[s -u + Dxx(nn/a)2 + D (m. r r /b )2 ]  h(z,s) YY 

a2h/az2 = cm p(z )  (2-16 
+ DZz 

where 
cm = bm/am . ( 2-17 
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Y 

t 

length 
0 

Green’s f’unction solution for infinite length rectangul ar cylinder. 

For a p l a s m  container of inf ini te  length i n  the z direction, 

equation (2-16) can be transformed using the Fourier transform 

(2-18) 

giving 

[ ( s  -v )  + Dn(nn / a )q  D (mv’b)2+ D u2kr,$,( W) (2-19) YY zz 

where $m(u) is the Fourier transform of cm p(z )  . 
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The inverse Laplace transformof (2-20) gives 

(2-21) 

Applying the inverse Fourier transform t o  obtain the z variable 

57ieias 

(2-22) 

In  order t o  obtain the Green's function solution fo r  

n(x,y,z,t) , the initial distribution function No= n(x,y,z,O) must 

be delta function 

N = 6 ( X-X' ) 6 (y-y ' ) 6 ( Z-Z' ) 
0 

and from (2-15) 

so that 

p(z)  = 6(z-z') 

an d 

(2-24) 
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"he Fourier coefficient b&, then is 

Also 

= (cnm/2*) exp[-juzT] . (2-26) 

Substituting this expression for $nm( w )  into (2-22) gives 

By ccanpleting the square of the integrand and making a change of 

variables, 

It is t o  be noted here that h(z , t )  is 

tims the Green's f'unction solution f o r  the one dimensional 

solution t o  

(2-28) 
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that is, the Green's f'unction solution fo r  (2-29) is written 

%US, f r o m  (2-ll), (2-l7), (2-28), the Green's f'unction solution 

corresponding t o  the ini t ia l  distribution n(x,y,z,O) = 

S(x-x')S(y-y')S(z-z') and the geometry of Fig. 2 is 

= 0 , t < O  . 
%e solution n(x,y,z,t) then f o r  an arbi t rary in i t ia l  

distribution f'unction No satisfying nwalls= 0 and wNch has 

a Fourier series representation is given by superposition t o  be 

a b  

0 o-m 
n(x,y,z,t) = I J ImNo G(rlr', t )  dx' dy' dz' . (2-32 1 

As an example, consider the following initial distribution 
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Applying the superposition integral (2-32) gives 

t> 0 
= o ,  t < O  

where bm is  the Fourier coefficient of F(x) G(y) , erf(q) is 

the  error function. 

It is  worthwhile t o  note that i n  the preceding development, 
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it was assumed that 

normal derivative of n at the  w a l l  w a s  zero or a combination of 

these boundary conditions w a s  applied, i.e., 

z dependent solution h(z , t )  would not have been altered, that is, 

the boundary conditions on the transverse walls do not affect  the 

z dependence of the diffusion. 

would be the replacemnt of the sine terms by an appropriate 

combination of sine and cosine terms. 

nwalls = 0 . If it had been assumed that the 

an/ax + an = 0 , the 

The only difference i n  the solution 

Fig. 4 

Green's function solution for infinite paral le l  plane geometry. 

The Green's function solution for the infinite pa ra l l e l  plane 

gemtry can be obtained by a similar rnethcd used t o  obtain the 

solution for the inf in i te  r e c t a n g u l a r  cylinder or by an ana lys i s  

of (2-30) and (2-31) . The result is 
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Green's f'unction solution for an unbounded region - For the 

unbounded region, the solution can be written again by analysis of 

(2-30) and (2-31) t o  be 

= o  J t < O .  (2-36) 

! 
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Green's function solution for rectangular cavity of finite 

dirnension - For the rectangular cavity the Green's function 

solution can be written 

t >o 

= 0 , t < O  . 
is the Fourier coefficient expansion for  the product of 

b&ll 

delta f'unctions. If bnml is the Fourier coefficient expansion 

of the initial density distribution function No then the solution 

obtained is actually n(x,y,z,t) as is eas i ly  seen when the 

superposition integral  for this problem is used. A similar 

statement can be made for  all of the preceding solutions i n  

rectangular coordinates. 

For the delta function i n i t i a l  distribution, 

b h =  (8/abc) sin(nnx'/a) sin(mmy'/b) sin(lnz'/c) . (2-38) 

A discussion of diffhsion for  cylindrical and spherical 

geometries and solutions t o  the diffusion problem are given i n  

Appendix A . 
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DESCRIPTION OF THE MpERlMENT 

3.1 Introduction 

Numerous experimnts have been performed t o  measure diff’usion, 

reccanbhation, attachment and ionization properties of gases by 

measuring the change i n  the Q of a cylindrical microwave cavity 

which contains a 

perturbation theory t o  account fo r  the change i n  the microwave 

field, it is limited in its usefulness t o  low density plasmas or  

small dimension plasmas where the perturbation of the microwave 
field is small. The method can certainly be extended t o  higher 

density and larger dimension plasmas by a more exact solution of 

the microwave cavity field, but the field solutions i n  general are 

d i f f i c u l t  t o  obtain and usually require computers t o  obtain 

n m r i c a l  results. 

Since this method usually uses a 

With these ideas i n  mind, a mthod w a s  designed t o  masure 

plasma diffusion where the f ie ld  solutions w e r e  either easy to 

obtain o r  not extremly important t o  the theory and w h e r e  the 

plasma system w a s  not l i m i t e d  t o  small dimensions. 

3.2 Experimental Bases 

Geometry - A rectangular geometry was chosen for  the experhent 

29 
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to simplin the f ie ld  solutions and plasma density solutions as 

much as possible. Microwave m a s m m n t  equipmnt i n  the 3-em. 

range w a s  available so the rectangular plasma container w a s  chosen 

t o  fit inside a 3-cm. rectangular waveguide. This then allows the 

plasma pmprt,ies t o  be obtained by a conpapison between 

measurement of the reflection of the dominant TE waveguide mode 10 

from the plasma distribution and tha t  calculated on a theoretical 

basis. Two possible regimes exis t  for  this type of experimmt: 

1) the local plasm frequency exceeds the microwave 
probe signal. f’requeney nearly everywhere i n  the 
plasma volume; 

2) the local plasm frequency is everywhere less than 
the microwave probe signal frequency. 

Doppler- Phase Shift Method - For a plasma where the inital 

electron density is such that the plasma frequency w 

than the incident signal frequency w almost everywhere, the 

method of Doppler shift is a useful means of measuring plasma 

properties. 

i s  greater 
P 

As an i l lustrat ion of this mthod, consider the 

following 0- * nsional problem where the plasm electron 

density pmceeds i n  time as i n  Fig. 6 . 

a 
I 



z 
0 

iJl2 

Z 
0 
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i 
i 

n=electron density 

e=electronic charge 

Eo=pernittivity of 
free space 
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A plane wave, ejkoZ , incident from the right, is reflected 

by the plasma distribution essentially at the llclassical turning 

point" or "reflection level" where the propagation constant i n  the 

plasma passes through zero value. 

e leetmn plasma model, the dielectric constant i n  the plasma is 

E= ~ ~ ( 1 -  u2/u2) so  that the propagation constant i n  the plasma is 

k =k (1- u2/u2)% . Essentially all of the incident plane wave is 

For a collisionless Lorentz 

P 

P O  P 

reflected from the classical  turning point zo where u2= u2. Thus, P 

as the plasma distribution diffuses along z , the turning point 

also changes and the reflection coefficient remains constant i n  

mgnitude but changes i n  phase. 

then will provide a usef'ul ITEW of determining the plasma 

distribution when measurements are compared t o  theory. 

necessary condition fo r  this method requires that the plasma is 

reasonably thick so that the reflection comes essentially from the 

turning point zo and any other turning point i s  not near zo i n  

A measurement of the phase change 

A 

terms of the e lec t r ica l  wavelength i n  the plasma. 

This method can be applied t o  waveguide structures as long as 

only one dominant mode is excited and used fo r  the measurement and 

the appropriate expression i s  used f o r  the propagation constant i n  

the guiding structure. 

problem is  given by E3uddenl4 and Wait.15 

A detailed discussion of this reflection 
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Reflection Coefficient Method - When the local  plasma fl-equency 

is everywhere less than the incident probe frequency, the plasma 

properties may be estimated by measuring the magnitude of the 

reflection coefficient of a decaying plasma and camparing the 

result with that obtained by calculating the reflection from the 

theoretical plasma distribution. 

plasma properties would be exact i f  the theory describing the 

plasma density were exact and the field solutions w e r e  obtained 

fo r  this plasma distribution. One of the fundamntal d i f f icu l t ies  

associated with this method as  with any method of this type is the 

detern-iination of correct boundary conditions and i n i t i a l  conditions 

for  the plasma distribution. 

This method f o r  obtaining the 

3.3 System Operation 

A 3-cm. pulsed magnetron ionizes the gas i n  the rectangular 

quartz tube located at  the center of a waveguide cross. 

density thus created diffuses throughout the quartz tube and 

f inal ly  decays t o  zero. A 3-cm. klystron osci l la tor  excites a TElo 

waveguide mode t o  probe the plasma distribution and obtain 

information about the plasma properties. 

then compared with the incident signal t o  measure the magnitude 

and phase of the reflected wave during the periods of ionization 

and decay of the plasma. 

measurement system is shown in  Fig. 7 . 

The plasma 

The reflected signal is 

A diagram of the ionization and 



34 

Isolation of the ionizing source and the probing signal is 

accomplished by the use of waveguide filters. Three band-rejection 

filters are tuned t o  the probe frequency and placed i n  the magnetron 

line to remove the portion of the magnetron spectrum that would 

interfere with the probe signal measuremnts. Additional band- 

pass filters, placed i n  the probe signal l ine and reflected line, 

pass the desired signal and reject the magnetron pulse. 

.i 

A t  one end of the waveguide cross, i n  the probe line, a 

matched load w a s  placed so that the probe l h e  is  matched t o  the 

klystron source when the plasma is absent. 

w a s  placed opposite the magnetron arm of the waveguide cross fo r  

the purpose of adjusting the impedance level of the system and 

matching the cross section t o  the probe l ine.  

switch w a s  placed i n  the probe l ine t o  allow the level of complete 

reflection t o  be calibrated. 

Also, a movable short 

A waveguide shorting 

The quartz tube i n  the probe line extends a length of 4 

inches on either side of the center of the magnetron l ine.  

container is constructed of 1/16 inch quartz plate which has been 

flrsed to produce a rectangular cylinder that fits snugly i n  the 

3-cm. waveguide. The ends are closed with 118 inch glass plate 

which has been epoxied i n  place. 

vacuum system by a length of 3/8 inch diameter glass tubing which 

passes through the matched load t o  a quick-coupling connector at 

The 

The tube i s  connected t o  the 



1 

35 

I 
I 
I 
B 
'I 

Plasma Ionization System 

to vacuum system 
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+shorting switch 

- band-pass f i l ter  

short 

band-pass f i l ter  
r 

detect o r  J 
t 

probe signal 

Fig .  7 

mixer and 
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the termination of the matched load. 

and matched load are pressurized at a pressure of 15 t o  20 psi. t o  

decrease arcing and breakdown outside the quartz tube. 

The magnetron l ine,  cross, 

A diagram of the phase masurement system is  shown in 

Fig. 8 . The signal f'rcxn the signal generator (klystron) of 

fkequency fo serves as the local osci l la tor  f o r  the balanced 

mixer. 

direetional coupler # 1 t o  the helix of the traveling-wave tube 

where the signal is phase mcdulated at the sawtooth frequency fl 

t o  produce an amplified signal of f'requency fo+ fi . The signal 

passes through an attenuator and phase shifter, which are used 

t o  set the proper amplitude and phase shift of the probe signal, 

t o  the plasma system probe line. 

P a r t  o f t h e  local oscil lator signal is coupled by 

A portion of the reflected wave is taken from directional 

coupler # 2 and sent t o  the signal input of the balanced mixer 

where the beat signal is  obtained. 

amplified by a differential amplifier and the resultant signal is 

applied t o  the signal input of the phase meter. 

meter, the phase of the signal frm the different ia l  amplifier is 

compared with the phase of  the osci l la tor  which synchronizes the 

sawtooth generator. 

signals is the phase of the reflection coefficient. 

The balanced mixer output is 

A t  the phase 

The difference i n  phase between these two 
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When the relative phase is s,owly varying i n  time, a phase 

meter of the type offered coIlanercially by AD-YU is desriable. 

On the other hand, for rapidly varying phase, the comparison of 

si- can be made on a dual-beam oscilloscope. 

9 7 -  ine rragd-tude of t i e  iW'iectioii coefficient is obtained by 

applying a portion of the reflected signal from directional 

coupler # 2 t o  a detector. 

detector signal on an oscilloscope gives the squqe of the 

reflection coefficient -tude as a f'unction of t i m e .  

?"ne presentation of the square law 

The technique just described here t o  measure the phase of 

the reflection coefficient i s  known as the Serrodyne technique 16 

and has been used t o  study phase shifts i n  such devices as 

traveling-wave tubes17 and ferrites18 when the phase shift 

between two signals of widely varying simp strengths w a s  

desired. 
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4 . 1  Expe rimental Conditions 

A n  experiment w a s  conducted using the apparatus described i n  

Chapter I11 with the following operating conditions: 

I t e m  Ionizing Source 

Source IQyetron 

Frequency 9.375 kmc. 
Operation Pulsed 
Peak power out loo kw. 
Pulse duration 1l.1 sec. 
Repetition rate 125 PPS- 

Type RK-6249 A 

Plasma container dimensions-I.D. 

Gas 
Neutral pressure 
Waveguide mode 
Detector output leve l  
for  complete reflection 

Probe Source 

Klystron 
725/AB 
8.254 kmc. 
Continuous 
10 mw. 

8in.x. 775in.x. 275111. 

Argon 
V a r i a b l e  
T o  
.185 volts 

4.2 Experimental Data 

I n i t i a l  rneasmments were made on the magnitude of the 

reflection coefficient for  the ionization and decay of the plasma 

distribution. The oscilloscope traces shown i n  Figs. 11, 12, 13, 

and 1 4  are the outputs of the square law detector, so  the graphs 

are proportional t o  the square of the reflection coefficient 

magnitude. 

.185 volts. 

The level of complete reflection for  this data is 

4 1  
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Fig. 11. Detector output for varying neutral gas pressures. 



X i e t r o n  noise pulse 
in the absence of the probe si,-. 

I 1 I 4 I I I I I t-/.  Sec. 
0 20 40 60 80 /DO /20 140 

Fig. 12.  Detector output for xuy ing  neutral  gas pressures. 
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P= 9U/&. 

0 20 40 60 80 100 120 

Fig. 13. Detector outpGt versus time. 

-*'t 

Fig. 1 4 .  A typical t race  showing detector output 
for the reflected signal. 
i n  the absence of the sippal is shown t o  the same 
magnitude scale i n  the upper right hand corner. 

The magnetron noise pulse 
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4.3 Mscussian and Cmclusians 

'Ihe experlmmtal llesults of Figs. ll, 12, 13, and 14, show the 

p ~ s e n c e  of a n-r of =flection peaks and minima as the plasma 

distrlbutian decays in the. These peaks and minima e explained 

in Appeadlx B by a s-le trausxubsim line theorg analopy t o  

wave@aeS WfLen the plasma distrrlbutian is assumed t o  be spatially 

uniform througBout the plasma ccntainer. This approximation of a 

decaying uniform plasma is a ~ascnable one since the plasma cavitg 

is Several wavele3lgths 1- f o r  the q z p t r m  fmpency and the 

n q p t r o n  standing wave pattern tends t o  

i2mou@out the plasma container. Also, based on this rnsiform 

i n i t i a l  cknslQ, the solution f o r  the aenSlty obtained f r a a  Eq, 

(2-27) reduces t o  tfr? rirst order mode in the transverse dinxt ions 

(n = m = ane) b t o  the fact  that, for the observed tinres of 

internst (t > 5 p.sec.) and lleascnable diffUssim coefficient 

values ( D = =  D = Dzz 

have decayed t o  inslgplf3cant anplltudes. The =dependent so lu t im  

mnains essentially uniform for the observed times because the 

expanential 1ces factor is extmmdy s&l for  small values of (1). 

lbis aenSlty PlDde solution then m y  be approximated by a decaying 

unifonn distributicn fo r  calculating the e l e c t m q p e t i c  effkcts. 

the plasma unifomly 

+ 

1 0 3 ) ~  the himr order density modes 
99 

Ch the basis of this sinple theory, ane would expect the mag- 

nitude of the peak m f l e c t i m  t o  decmase as the plasma decays in 

tiE and the Ildnirna t o  mnaln at the zero level. The fact  that 

this was not experimntally observed is explained by the pllesence 
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of the effective plasma collisim fI.equency which gives rlse t o  a 

canplex pemdttivlty and a lossy dielectr ic  slab. A detailed &Is- 

cussim of this theoxetical prcblem is glwn in Appendix B. 

The elrpel?iment is not verg satisfactory fo r  accurate diffusicn 

msas-t because of the necessary assqticns made mgadng 

boundazy cmditicns, neglect of reccmbinatim, and uniform 

densities; hawever, the experirm?nt ( for  u2 < w2) provides a good, 

sinple method of otjtaining an estimate for  the diffuslcn coef- 

ficient. 

P 

(See details In  Pspendlx B). 

It is clear  froon the mults of this expe rhmt  that the plasm 

cxeated was not dense enom to  give m f l e c t l m  coefpicient -= 

tudes near unity W M C h  indlcatea that the local plasma ftequ?ncy 

0 W 8 8  8-F than the Probe S i m  mWtlCg (d thI'OU@OUt ths P 
elplezdmnt. Further study of thia problem should be IIlade with 

higher Initial densities of plasma, possibly by considering a gas 

discharge tube as a source for the initial plasma aenSity so that 

the mthod of Dcppler shift my be evaluated as a useful mans of 

masuring plasma dlffusian. Also, studies of d i f f b l a n  with 

steady magnetic fields could be mde. 

Calculatims made in Appendix B Indicate that a typical valw 

fo r  the dlffuslm coefficient In Argon at a tlm of 40 v.secmds 

after the icnizatlan I s  an the order of 1.85 x l o 3  a$ per sec. 

This value I s  rather high for m i p o l a r  diffusim In Argm whlch 

seem t o  Ind icate that for  the times of observation the plasma I s  

not in equilibrium and-the diffuslm loss is a conbinatIan of elec- 

trm and anbipolar diffhlm. 
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where in general 
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If a uniform steady magnetic f ie ld  is  directed along the 

then it is easily shown by an argument similar t o  that 

given fo r  5 i n  a rectangular system that 

z axis, 

and (A-1) reduces t o  an expression involving DIT, D4+, and D Z Z ,  

the coordinate diff’usion coefficients. 

Also, f o r  the magnetic f ield - B = Bo % , 

and v.(D.vn) again reduces t o  (A-4) . Any other magnetic f i e l d  

configurations such as = B a or  directions other than & 
0 - 4  

and & w i l l  produce the term Drz(l/ran/az) and disrupt the 
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symmetry &the equation except in those cases where the plasma 

density is uniform along the z axis. For the case of uniform- 

i t y  along z , an/az = 0 , and (A-1) always reduces to 

for any uniform magnetic field configuration, = B a or B + 

or B & or any linear combination of these. When a particular 

-+ 

synmtry of the distribution f'unction exists or a field 

orientation exists that makes the cross term DrZ(l/ran/az) 

vanish, the solution of the diffusion problem is possible by 

separation of variables. 

Solutions of Diff'usion in a Cylindrical Geometry 

It is assumed in all of the following solutions that even 

synrmetry exists over the 

the solution involves cos ncp . 
symnetry exists over the cp coordinates, the cos ncp terms must 

be replaced by (An cos n$+ B sin n$) . 

cp coordinate so that any expasnion of 

For the general case where no 

n 



X Fig. 16 

Infinite Cylinder. 

i n f i n i t e l y  long cylinder of radius a where (2-1) is  t o  be solved 

i n  cylindrical coordinates. 

f i e ld  configuration is such that (2-1) can be written 

Consider the geometry of Fig. 7 fo r  an 

It is also assumed that the magnetic 

Dm(a2n/ar2+ l/ran/ar) + D 4 & l / r 2 a 2 n / a @ 2 )  

+ Dzz(a2n/az2)+vn = a d a t  (A-7 1 

where 

coll ision frequency and the attachment coll ision frequency. 

The solution of this p r o b l e m w i l l  proceed along the same l ines  as 

f o r  the rectangular case. 

v, again, i s  the difference between the ionization 

The Laplace transform of (A-7) gives 
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Dm( a2N/ar2+ l / r a N / a r )  t D$$( l / r 2 a 2 N / a $ 2 )  

+ D (a2N/aZ2)  + (u- S )  N = - No zz (A-8 1 

where 

If Dm= D$4y n could be  expanded i n  a series of modes for  the 

problem, cos n@ Jn(pm r) h(z,t)  . However, the solutions f o r  

Dm # D can be expressed i n  series form if the Bessel f’unction $4 

solutions of the first kind are mdified. 

written 

The solution can be 
* 

f 
No attempt will be made t o  prove completeness of this set of 

functions since most diffusion problems of interest  require only a 
finite number of expansion terms or k=l . 
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If the assumptions of (A-9) are applied t o  (A-8) and terms of the 

series are equated, the following relation is  obtained: 

-D...CP(kn)m - k2n2/r2] &(z,s) - D,,Cn2/r214(z,s) 

+-D zz [$&z,&'az2] + [v- &(z,sj = -c nm dz) 

where cm= b /a , &(z,s) is the Laplace transform of nmm 

Taking the Fourier transform over the z variable gives 

where 4m(u) i s  the Fourier transform of cm q(z),Mw, s) 

is the Fourier transform of x ( z , s )  . 

?"ne inverse Laplace and Fourier tramforms of ( A - 1 1 )  vie S 

As in the rectangular case, the Green's function solution is 

desired so that it i s  assumed 

(A-14 ) 
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so that 

q(z)  = 6(z-z') . 

'Ihe ccanplete Green's f'unction solution of (A-7) then i s  

I 
I 
I 
I 
I 
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Cylinder of Infinite Radius and Finite Length. 

of the infinite radius cylinder a s  in F i g .  8 w i l l  be considered. 

?he solution t o  this problemhas already be given on page 13 of 

Chapter 2, (2-39, i n  rectangular coordinates. 

N e x t ,  the problem 

The solution t o  (A-7) i s  desired subject t o  the same boundary 

conditions, namely nwalls = 0 . 
domain gives (A-8) : 

The Laplace transform i n  the t i m e  

Drr(a2N/ar2+ l / r a N / a r )  t D ( l / r 2 a 2 N / a $ 2 )  $4 

+ D ~ ~ ( ~ ~ N / ~ Z Z +  (u- S ) N  = - N ~  

where N is again the Laplace transform of n(r ,@,z, t ) ,  No is 

n(r,$,z,O) . 
series of the form 

It is  also assumed that N and No can be expanded in  
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m 

n(r,$,z,t) = am cos n$ sin(mnz/c) R ( r , t )  , (A-18) 
n=O 
m O  

m 

cos n$ sin(mnz/c) q(r) b* n(r,4,z,O) = No= 
n=O 
n F 0  

(A-19 1 

Applying these a s s q t i o n s  t o  (A-8) and equating terms of the 

series gives 

(A-20) 
- D ~ , ( ~ V / C ) ~ +  (v- s) ]  E = -cm q(r) 

where R is the Laplace transform of R ( r , t )  , cm= bm/am . - 

In order t o  suppress the r variable, the Hankel transform 

pair is used 

(A-21) 

The Hankel transform of (A-20) reduces in  i ts  final form t o  

[ (s  - v )  + DZ,(mrr/c)2+ D,w2]R = K(u) (A-22) 

where 4 is the Hankel transform of R and K ( w )  i s  the Hankel - 
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transform of cm q ( r )  . 
me expression for  %then is 

The inverse Laplace and Hankel transforms of (A-23) yield 

R ( r , t  ) = exp&v - DZ,(mrr/c)2)] t 

In order t o  obtain the Green's function solution for  the problem, 

it is asspwd that the i n i t i a l  distribution No is a delta 

function 

6 (4-0' ) 6 (z-z' ) (A-25 1 No= n(r,+,z,O) = 6 b y '  1 
P 

For this initial distribution, K(w) then, is 

and 

R ( r , t )  = exp[jv -DZz(mrr/c)2 I t ]  

(A-26) 
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The integral solution has been tabulated in "Tables of Integral 

Transforms", Eateman Manuscript Project, McGraw-Hill, Volume 2, 

p. 51, 1954. It I s  given as: 

V(2Dmt) exp[-(r*2+ r2)/(4Dmt 

where I (n) is the modified Bessel 

order u. R(r,t) is written 
U 

f'unction of the first kind of 

The final Green's function solution, then, is 

(A-30)  

where bmr = (2/nc) cos n$' sin(msz'/c) for n # 0 , 

= (l/ac) sin(mnz/c) for n = 0 . (A-31) 

Green's Function Solution for Unbounded Cylindrical Region. 

The unbounded solution in cylindrical coordinates can easily be 

obtained by using the results of (A-30)  and (2-30).  The resultant 



solution is G ( r [ r ' ,  

m 

t? c 

= o y  t < O  

where 

= i / n  cos n4' , n + 0 

= 1/2T , n = O .  

brit 

Green's Function Solution for  a Bourqied Cylindrical Region. 

-Y 
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"he Green's function solution for the geometry of Fig. 9 can 

be expanded in a series of modes for the cylindrical geanetry: 

C bm,cos ng J kn (p k n m  r) sin(mz/c) 
n=o 

= o  , t < O  

n = O .  

(A-34 

(A-35 1 
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Diffusion in a Spherical Geometry 

f 

I 
I / -  

/ 
0 \ I  , 

Y 

In spherical coordinates, V. (E. Vn) is expanded as 

If, for the spherical case, = B a or Bo & , (A-36) 
O-$ 

reduces to 
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Also, i f  symnetry exists about the z axis, W a g  = 0 and 

equation (A-36) reduces t o  

for any linear canbination of uniform magnetic f i e l d  cosnponents 

+ B  a + B  a + B 4 & .  2-0 3 *  - B = % s  

The generalized solutions are di f f icu l t  t o  obtain in terms of 

known fbc t ions ,  and no attempt at the solutions w i l l  be made 

here. 



RlPLECEON F'Rm A PLASMA SLAB IN A WAVEGUTDE 

Waveguide-Transmission Line Analogy 

The problem of transmission and reflection of a dcaninant 

&e i n  a waveguide i n  which the propagation constant is only a 

function of the longitudinal direction can be treated by solving 

the analogous problem by transmission l ine  theory since the 

equation governing transmission along the length of the two 

systems is the same. The wave impedance for  the mode i n  the 

waveguide is directly analogous t o  the characteristic hpedance 

fo r  a transmission line. 

Consider the following transmission line analogy t o  the 

problem of a waveguide which is perfectly matched but contains a 

uniform slab of dielectr ic  of' length L . 

62 
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Dielectric Slab 

+ L +  
A '  

r' -- I 
Z - zc 5 3  P zC n zL= zc 

I 
I I 

or wave impedance f o r t h e  
waveguide i n  f'ree space. zC 

= Characteristic impedance or  wave impedance for the 
'P dielectr ic  section. 

Fig. 20. Transmission Line Analogy 

According t o  transmission l ine  theory, the impedance seen 

looking toward the load at section A-A' i s  

z (ZL+ z tanh .3L) 
z =  

( Z  + ZL tanh aL) 
P 

Z (1 + tanh 3L) 
- - P 

(2- + tanh 
P 

where 2 = a + jS is  the complex propagation factor i n  the 

dielectric;  a is the attenuation constant and 6 is the 
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* 

I 
1 
I 
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- 
propagation constant. Z = Z /Z is defined as the characteristic 

P P C  

normalized impedance of the slab section. 

The corresponding reflection coefficient f o r  the input t o  

the slab section is 

z - z_ (Z - 1) t a n h 8 L  

z + zc (ZL + 1) tanh 2 L t 2  z 
P P 

(B-2 

(3 + 1) t 2 coth 3L P - .  P 

The propagation factor a' is defined by 

where kc = (a/a) f o r  the 'Elo rectangular waveguide mode,  

K = dielectr ic  constant = E / E ~  

ko = W/C = 2r/Xo 

= free space wavelength of the probe signal, 
hO 

w = radian frequency of the probe signal, 

c = speed of light i n  free space. 

The characterisitc impedances are defined by 



8 
8 
1 
8 
8 
I 
8 
I 
8 

I 
8 
1 
1 
1 
I 
8 
8 
I 

i 

. 

where Zo = ( 

(55 

vi? 
/E ) = characteristic I O  dance f fYee space, 

Collisionless Plasma Slab 

The problem of finding the maximLrm and minimum magnitudes of 

the reflection coefficient far a slab with a complex dielectr ic  

constant K is d i f f icu l t  because of the awkward expressions 

involved. 

dielectr ic  constant K = (1 -$/w2) , the problem is simplified. 

If (nc/a)2 + $ < 3 
P 

For a lossless plasma, however, characterized by the 

where w is the plasma frequency, and 

and a =  j f3 are pure imaginary nmbers corresponding t o  a 

propagating mode i n  the waveguide, than z is a positive real P 

quantity. For this case, c o t h a  = j cotBL and 

R =  _. 

(F + 1) + 2jzp COtBL 
P 

?he relative minimum values for  IRI occur for  

B L = m n ,  

m = 1, 2, 3, ... 

03-51 
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8 
I 
i 

and the corresponding value of IRI- for these values of BL is 

IR/- = 0 . (B-7 1 

The relative maxima occur for 

6L = (n + 1/2)n , 
n = 0, 1, 2, 3, ..... 

and the corresponding value of the maximum is  

Also, a r q i m u ~ ~ ~  reflection of uni ty  occurs for  the lossless plasma 

case when f3 = 0 . 
of the waveguide mode i n  the plasma slab section. 

This is the cutoff condition f o r  propagation 

The preceding relations for B give the "resonant" conditions 

for the plasma slab when the dielectr ic  constant is pure real and 

the mode is propagating i n  the plasma section. 

constant, 

w a n d w  are 
P 

For a dielectr ic  

K = (1 - $/W2) , the corresponding relations between 

n = 0, 1, 2 ,  3, ........ 
-- cut off condition lT2C2 ,2- 2 -+ - --w 

P a2 
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m = 1, 2, 3, ....... 
A plot of IRI versus 8L is given i n  Fig. 21. 

I 

1 
8 
I 
8 
8 
I 
I 
I 
I 
I 
I 
8 
8 
8 
8 
I 
8 
8 
I 

. 

\ 
I 

, > 
0 n/2 n 3a/2 2n 8L 

Fig. 21. IRI Versus BL for  Lossless Slab. 

Plasma Slab with Collisions 

For a temperate plasma i n  which the collisions between the 

constituent particles cannot be neglected as a loss term, the 

dielectr ic  constant is usually characterized by 
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Tiz-1 P 
zzt1 

1 
8 
1 
I 
8 
1 
I 
I 
8 
I 
8 
8 
8 
I 
I 
8 

where v is the effective collision frequency of the plasma. 

When the collision frequency v is small compared t o  the probe 

signal frequency w , the values of BL for  maximum or minimum 

reflection magnitudes do not change appreciably from the 

collisionless case but the maxima and minima of the reflection 

coefficient magnitude are reduced t o  the approximate expressions 

(22+ 1) t 2 2  tanhaL 
3 

P P 

(2-2- 1) 

(z2+ 1) t 2F cothaL 
P P 

A plot  of the reflection coefficient magnitude is  given i n  

Fig. 22 

IRI ,,j 

- 
- 322 
z +1 P 

/J 

('22- 1) 

(F+ 1) : 2 2  tanhaL I '9 P 

I . / r  
i 

1 (Tl) + 2z cothaL 1 
BL P 

i I 

2TI (& n/2 TI 3n/2 
(5/ , 

Fig. 22. IRI vs. BL f o r  Lossy Slab. 
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It has been shm that the effects  of losses in  the dielectr ic  

slab OF coUlslons for a plasma slab has the effect  of lowering 

the xflectian maglltude peaks and raising of the re f l ec t im  IpLnima 

-the zem level. when the effective coll lslan f'zquency is 

N@, both the levels of the narflrarm and ndnimum xeflectfons and 

the comqpcnding values of BL m charqpd appmclably. 

Calculations of Fksanance Densities and the Mfftlslan Coefficient 

'Ibe electron cknsities at the peaks and nulls shown in Fie;s. 

11 - 1 4  can be calculated fmn Eqs. (B-10) and (Ell). 

. _--  /.7 I 

0 
0 

Fig. 23 Wave@.& and Plasma Cavity Mnrenslons. 

8 



B =  09 in. = 2.29 ~ r m ,  

b = .4 In. = 1.02 an. 

a' = .775 in. = 1.97 an. 

b* = .275 in. = .7 an 

L - 8 in. = 20.32 cm. 

f = 8.254 lapc = probe siw fhquency 

w = 5.19 x lo1* radl- per second 

02 = W 2  

m =  1, 2, 3 ..... 



E = permdttivity of plama - E O ( l  - u2/02) 
P 

= p e d t t i v i t y  of m space 
€ 0  N~ e2 
d = ( p m  = -r 
P 0 

Ne = ekctrcm density 

M =mass ofelectrcn 

e = electlaric 

w = P- silPlal=wl= fi.equencY 

c = speed of light in fzee space 

a =width of mCtat@ar guik 

L =lengthoftheplasmaslab. 

The WP of the last peak shown in Fig. 14 is easily obtained 

since it comespards to the shortening of the electrical length BL 

From its fm? space value t o  the ches t  odd rmltiple of n/2. 

sinple cakulatian gives n - 6 for this hst peak. 

A 

A typical calculatlan from the data of Flg. 14 for the density 

at the peak lleflectian comspmding to  n - 6 gives: 

= 26.93 x 1020 - 9.09 x 1020 - 16.93 x 1O2O 

= .91 x 1020 

Ne e2 
since U2 31 '7 = 3.17 X lo9 Ne for the density Ne given in 

P 0 



elect= per cubic CentiEter,  the va lw of Ne6 is found t o  be 

= 2.87 x 1OlD elec./cc. Ne6 

A plot  of Ne versus tm based on these calculations is even in 

Flg. 24. A calculation of the diffusion coefficient D can now be 

macle based on the data of Fig. 24 and 4. (2-37). The plasma 

aenSity decays essentially as 

The value of D can be obta ined  by taking the derivative of N e ( t )  

with respect t o  t and dividing by N e ( t ) .  

F h m  the data of fig. 24, (t 2 40u.sec.), the value of D is 

DC22.73 = 4.2 x l o4  

D = 1.85 x lo3 ar?/sec. 
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